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There are a number of obstacles to successful
operationalization of clinical practice guidelines,
including the dificulty in accurately representing a
statement's decidability or an action's executability.
Both require reasoning with incomplete and
imprecise information, and we present one means of
processing such information. We begin with a brief
overview offuzzy set theory, in which elements can
have partial memberships in multiple sets. Withfuzzy
inferencing, these sets can be combined to create
multiple conclusions, each with varying degrees of
truth. We demonstrate afuzzy model developedfrom
a published clinical practice guideline on the
management of first simple febrile seizures.
Although the creation of fuzzy sets can be an
arbitrary process, we believe thatfuzzy inferencing is
an effective tool for the expression of guideline
recommendations, and that it can be useful for the
management ofimprecision and uncertainty.

INTRODUCTION

There has been increasing interest in
incorporating clinical practice guidelines into
computer-based patient records [1, 2]. However, a
number of problems have emerged from the process
of operationalizing a guideline's recommendations
into decision support tools [3]. One is the issue of
decidability, or determining the exact circumstances
under which an action is recommended. A vaguely
phrased decision criterion such as "low-grade fever"
can be difficult to interpret. Even a clearly defined
sign can be more or less convincing in different
patients (e.g. a "textbook" Brudzinski sign vs. a
borderline or less obvious case). Another issue is the
executability of an action, or exactly what to do if
specific decision criteria are satisfied. How does one
operationalize a phrase like, "IF wheezing is severe
AND beta-agonists are not helpful THEN consider
transfer to an emergency room?" Likewise, how
does one differentiate consider from strongly
consider or recommend.?

In general, these issues emphasize the fact that a
conventional guideline relies on deterministic, all-or-
none reasoning, while clinical practice often requires
reasoning with incomplete and imprecise

information. The capacity for approximate reasoning
is a critical component of any computer-based
medical inferencing system. We describe a useful
means of approximate reasoning for operationalizing
clinical guideline logic.

Fuzzy Sets and Fuzzy Logic
Fuzzy sets were first described by Zadeh in 1965

[4]. He extended Aristotelian two-valued logic and
conventional set theory by proposing sets with
indistinct boundaries. An element in a fuzzy set has
a partial membership in it, rather than all-or-none
membership as in a conventional set. This degree of
membership is described by a membership function,
whose value lies in the continuous interval of [0, 1].
Thus in the set of tall people, Michael, who is 6'2",
could have a membership of 0.8, implying that he is
80% tall. A person who stands 7' would have a
higher membership value; someone 5'10" would have
a lower value. This is distinct from probabilistic
reasoning, in that the latter describes a likelihood of
absolute membership or non-membership (Michael
has an 80% chance of being absolutely tall, a 20%
chance of being short), while a fuzzy membership
implies that an element has an intrinsic, partial
membership within the set (Michael is 80% tall). In
addition, a fuzzy element can belong to multiple sets,
but the sum total of the membership values in the sets
that contain it can be less than or greater than 1.0 [5].

Zadeh also described a series of logical
operations that can be performed on fuzzy sets. The
classical NOT would be implemented by taking 1.0
minus the membership value (e.g. if Michael is 0.8
tall, he is 0.2 NOT-tall). The classical OR (or the
UNION, in set theory or modified ADDITION, in
probabilistic reasoning) is used to collect the
elements that are in either set, and is implemented in
fuzzy sets by taking the maximum membership
between the two values (MAXIMA). So if Michael
is 0.8 tall and 0.4 strong, he is 0.8 tall OR strong.
The classical AND (set theory INTERSECTION or
probabilistic MULTIPLICATION) is an operation
which determines the elements which are common to
two sets, and is often implemented as the minimum
membership value between two or more elements
(MINIMA). (In our above example, Michael would
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be 0.4 tall AND strong). Using these definitions, one
can derive all of the fundamental properties of
classical logic and set theory, except for the Law of
Contradiction (A AND NOT-A = null set) and the
Law of the Excluded Middle (A OR NOT-A =
universal set) [6]. After all, in our fuzzy example,
Michael can be 0.2 tall AND NOT-tall, and 0.8 tall
OR NOT-tall.

In a subsequent paper, Zadeh described methods
of inferencing using fuizzy sets [7]. One can group
fuizzy sets using MAXIMA or MINIMA operations,
or create relationships between fuzzy variables with
conditional IF-THEN statements. Zadeh also
described mathematical operators which he called
"hedges," which approximate linguistic modifiers of
words (e.g. "more or less," "very," etc.). Based on
these principles, Zadeh developed an elaborate
system of reasoning, in which partial membership in
multiple sets can result in multiple possible
conclusions, each with varying degrees of truth. He
also described fuzzy algorithms which extend these
principles to handle more complex problems.

Zadeh's fuzzy inferencing methods have found
their widest use in control systems. Fuzzy designers
have taken advantage of the ability of fuzzy sets to
express vague linguistic terms, and perform
inferencing using expert-derived, intuitively phrased
rules. They have exploited the capacity of fuzzy
inferencing to create systems with a high tolerance
for uncertain or incomplete information [8]. Fuzzy
inferencing has principally been used in medicine in
diagnosis and classification engines [9, 10, 11], in
control systems [12, 13], and in pattern recognition
and image enhancement [14, 15].

THE GUIDELINE

The Guidelines Review Group at the Yale Center
for Medical Informatics has been evaluating the
logical integrity of guidelines published by the
American Academy of Pediatrics (AAP). In our
evaluations, we identify decision variables and
recommended actions from the guidelines, and assess
their decidability and executability.

One guideline that we have analyzed concerns
the AAP's recommendations for management of the
first simple febrile seizure in otherwise healthy
children aged 6 to 60 months [16]. The guideline (1)
describes the children who are eligible for its
recommendations, (2) states that routine diagnostic
use of EEG's, neuroimaging, and bloodwork is not
generally indicated, and (3) lists factors involved in

the decision to perform lumbar puncture (LP) as part
of the diagnostic evaluation.

Problems with Implementation
A number of problems arose in considering how

the guideline could be implemented in a computer
program. For example, the criteria for deciding
whether to perform LP, and the strength of
recommendation for LP, are not clear-cut. The
guideline states:

The American Academy of Pediatrics recommends,
on the basis of published evidence and consensus,
that after the first seizures with fever in infants
younger than 12 months, performance of a lumbar
puncture be strongly considered, because the
clinical signs and symptoms associated with
meningitis may be minimal or absent in this age
group. In a child between 12 and 18 months of
age, a lumbar puncture should be considered,
because clinical signs and symptoms of meningitis
may be subtle. In a child older than 18 months,
although a lumbar puncture is not routinely
warranted, it is recommended in the presence of
meningeal signs and symptoms (i.e., neck stiffness
and Kernig and Brudzinski signs), which are
usually present with meningitis, or for any child
whose history or examination result suggests the
presence of intracranial infection. In infants and
children who have had febrile seizures and have
received prior antibiotic treatment, clinicians
should be aware that treatment can mask the signs
and symptoms of meningitis. As such, a lumbar
puncture should be strongly considered (italics
added) [16].

In analyzing this paragraph, we isolated three
principal decision variables that factor into the
appropriateness of lumbar puncture. Fuzzy
inferencing can help to quantify some of the issues of
decidability around each of these variables. The first
fuzzy variable is the presence of evidence suggestive
of intracranial infection. This can be open to
interpretation; Brudzinski sign can be obvious in one
case and merely suspicious in another. Moreover,
there are less specific signs such as neck stiffness,
lethargy, elevated peripheral white blood cell (WBC)
count, and petechiae. The guideline does not
distinguish these from more persuasive signs.

A history of recent antibiotics is the second
fuizzy decision variable. The specific antibiotic given
may not be critical, since most antibiotics commonly
prescribed for children have some degree of activity
against the organisms most frequently responsible for
meningitis. However, the interval between the last
dose of an antibiotic and the seizure is of paramount
importance; a drug given yesterday is much more
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confounding than one given three days ago, and
either is far more concerning than one given two or
three weeks ago.

Our third fuizzy decision variable is the child's
age; the guideline draws crisp distinctions between
children 6-12 months old, 12-18 months old, and 18-
60 months old. This reflects the observation that a
child's ability to display recognizable signs of
meningitis increases with time. However, this
improvement occurs continuously, and not in discrete
jumps. For example, there are obvious changes
between a child aged 9, 15, and 36 months. On the
other hand, a child of 13 months would probably act
more like a child of 11 months than one of 18,
though the hard-and-fast categories of the guideline
do not reflect this concept.

Finally, the executability of the recommendation
for an LP is described in terms of four fuzzy classes;
an LP can be recommended, strongly considered,
considered, or not routinely warranted. Again, most
clinicians would think more in terms of a continuum
of possibilities rather than four discrete classes, and
have some intuitive means of making a decision
based on combining the three input variables. The
guideline offers no means of combining these
variables. We believe that these decision variables
and the executability of the decision for an LP are all
eminently suitable for "fuzzification."

Using the above decision criteria, we reduced the
paragraph from the guideline to the following five
rules [details in 17]:

* IF meningeal signs are present, THEN LP is
recommended.

* IF antibiotics have been given recently,
THEN LP should be strongly considered.

If neither of these is true:
* IF the child is 6-12 months old, THEN LP

should be strongly considered.
* IF the child is 12-18 months old, THEN LP

should be considered.
* IF the child is 18-60 months old, THEN LP

is not routinely warranted.

Applying Fuzzy Sets to the Decision Rules
Our output variable is the strength of

recommendation for lumbar puncture. We will
implement the decision by dividing appropriateness
of LP into four fuzzy classes: (a) not routinely
warranted (we arbitrarily assign membership values
of 0 to 0.25 in this class); (b) considered (interval
from 0.25 to 0.5); (c) strongly considered (interval

from 0.5 to 0.75); and (d) recommended (interval
from 0.75 to 1.0).

The three fuzzy decision variables can then be
classified in terms of the degree that each of them
contributes to the LP. The first variable, the evidence
for intracranial infection, comprises consideration of
its various signs, such as Kernig or Brudzinski sign,
WBC count, lethargy, etc. Each of these signs can be
assigned its own membership function. But not all
signs are equally concerning; a clear-cut Brudzinski
sign would be sufficient to recommend LP, but other
signs such as a high WBC count might not raise as
much concern; thus each membership function may
not have the same maximum value. For example, if
the maximum concern from a high WBC count were
to strongly consider LP, or 0.75, and the leucocyte
count was 11,000/j±l-a 60% convincing high WBC
count-the total WBC score would be 60% of the
maximum 0.75, or 0.45.

Since a single convincing sign would be
sufficient grounds to perform LP, we will combine
the presence of these signs using a fuzzy OR (MAX)
operator, where Brudzinski sign is assigned a
maximum possible appropriateness of 1.0
(recommended), and other signs can be assigned a
less concerning maximum score (e.g., 0.5). Thus if
Brudzinski sign is 75% convincing and the WBC
count is 60% elevated (score=0.45), the level of
recommendation for an LP is the maximum of these
memberships, or 0.75 (strongly consider).

The interval since the patient last received
antibiotics is the second fuzzy decision variable. In
the guideline, recent antibiotics can, at most, cause
the clinician to strongly consider LP; presumably
concern dwindles with increasing time since the last
dose. We can therefore implement this variable with
a simple straight-line membership function (Figure 1)
whose value is 0.75 at time 0 and steadily decreases
with time since the last dose of antibiotic.

days after last dose of antibiotic

Figure 1: Interval since antibiotic vs. appropriateness
of LP
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The patient's age is the third input variable. We
propose that an index of concern that continuously
decreases over time would be more realistic than
three large age classes. When age alone is
considered as a trigger for LP, concern never rises
higher than to strongly consider LP for a 6-month-
old child; at 12 months, the physician is instructed to
consider LP, and at 18 months, LP is not routinely
warranted. We can therefore define a membership
function that starts with a value of 0.75 at 6 months,
decreases steadily to 0.5 at 12 months, and reaches
0.25 at 18 months. After that, concern steadily
decreases such that it becomes minimal by the age of
60 months (Figure 2).
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Figure 2: Patient's age vs. appropriateness ofLP

Decision Making with These Fuzzy Sets
We assume that any of these three variables

alone would be sufficient to trigger the LP decision
in a child. This suggests that an inference engine
could simply take the highest value among the three
variables (fuzzy OR) to create an output score. This
score can then be back-translated into a linguistic
level of appropriateness for an LP.

Recommendation for LP = MAX (suspicion of
intracranial infection, age, time since last antibiotic)

For example, if the patient was 17 months old,
last received antibiotics 5 days ago for an episode of
otitis media, and had an 80% convincing Brudzinski
sign, then (1) the age score is about 0.3, (2) the
antibiotic score is about 0.6, and (3) the evidence of
intracranial infection score is 0.8. The output
appropriateness of an LP, therefore, would be 0.8,
which translates into an LP being recommended.
However, this score can easily be changed, e.g. if the
meningeal signs were less convincing, the score

would decrease markedly, while if antibiotics were

given more recently, the score could increase as high
as 0.75, etc.

DISCUSSION

Several advantages become evident with the use

of fuzzy modeling. For example:

* We believe that these continuous fuzzy
variables better fit a human's approach to
reasoning than the guideline's crisp
categories. Decision variables gradually
change from one state to another, rather than
abruptly changing at arbitrary and arguable
cutoff values.

* Our inferencing method uses these variables
to adapt complex, nonlinear concepts-
which are not as amenable for mathematical
modeling-into linguistic constructs that are

easy to develop and understand.
* The system does not require an assumption

that our input variables are independent, as

Bayesian probabilistic approaches do.
* In general, a well-designed fuzzy system

tends to be more tolerant of ambiguity and
uncertainty than probabilistic and
conventional algorithmic approaches.

* In more complex multivariable systems, the
use of fuzzy classes allows multiple options
to be activated with varying strengths. The
system designer can then choose a threshold
membership value to determine how many

options should be presented to the user, and
the comparative strength of each option.

At the same time, a number of disadvantages
become readily apparent with fuzzy inferencing:

* The membership functions and classes used
to describe fuzzy sets are inherently
arbitrary. There are multiple ways that we
could assign consideration for LP (not
routinely performed could have been
assigned a value of 0, recommended a value
of 1, and considered and strongly
considered could split the range in
between); those reassigned choices could
then influence the design of other classes.

* Once the rules are defined, they require
extensive testing to confirm their ability to
describe reality accurately.

* As the number of system variables
increases, the rule base explodes at an

exponential rate, reducing system
comprehensibility.

A number of additional tools have been
described to help handle the additional complexity of
more ambitious systems. For example, fuzzy
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decision tables can be used to help systematically
analyze rules to insure against incompleteness,
redundancy, or contradiction [18, 19].

We have described a method for operationalizing
a current clinical practice guideline by using fuzzy
logic to express the uncertainty inherent in the sys-
tem. We believe that fuzzy sets make it possible to
quantify a series of vague linguistic concepts. These
concepts can then be combined with the flexibility of
certainty factors, with more expressiveness than
Dempster-Shafer theory, and fewer restrictions on
variable independence than in Bayesian probability.
Fuzzy inferencing thus provides another useful tool
to help computerized guidelines to draw conclusions
from imprecise information.
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